

high speed positioner

nanoX 400 line

- 480µm range of motion
- highest dynamical performance
- excellent guidance accuracy
- 0.8 nm resolution
- Ø 3mm free aperture

applications:

- automation
- laser optics
- life science
- scanning systems

Concept

The nanoX 400 one axis low voltage linear stage is a development within our ultra-fast nanoX[®]-line. It provides a long positioning and scanning range up to 480microns.

Due to FEA-optimization of these stages you meet highest dynamical performance and excellent guiding accuracy. This is accomplished even with high mass loads in a compact package.

Our optimization also incorporates excellent temperature compensation properties.

The sophisticated monolithic guidance design of the solid flexure hinges means the trajectory is free of mechanical play and friction a feature by all piezojena stages.

Vacuum and cryogenic versions are available on demand as well as body material variations of invar, superinvar, aluminum or titanium.

An optional external sensor preamplifier (version "extern" / "digital") offers independence from cable length.

Specials

highest The positioning stability, linearity accuracy, and reproducibility are in closed loop achieved operation when used in combination with the high resolution capacitive direct measuring feedback system from *piezosystem jena*.

The digital amplifier/controller from piezosystem jena allows additional feature in-situ and dynamical set up of PIDparameters, slew rate and notch filter band width. The mechanical resonance can be found using the built in wobble generator. The notch filter set up eliminates undesired frequencies from the output voltage, such as the stage's resonant frequency.

So you easy can adapt the set up depending on the current load scenario and optimize the performance of the system.

fig.: nanoX 400

Mounting/Installation

Piezoactuators generate а pressure force to effect the resulting motion based on a solid state phenomena. The resolution is only limited by the noise of the amplifier and metrology. Such devices are neither affected by magnetic fields nor do they produce them. In cryogenic environments they function down to almost zero Kelvin. There is an associated decrease in the extension behavior. In vacuum conditions piezoactuators can be used at pressure below 10Pa. They should not be operated in the pressure range from 10Pa to 10kPa due to the greatly reduced dielectric breakdown strength of air.

The raster tapped and thru holes allow easy integration of the stage into any application or mechanical setup.

technical data:

series nanoX		unit	nanoX 400	nanoX400 SG	nan	oX400	САР
part no.		-	T-108-20	T-108-21	Т	T-108-26	
axis			Х				
motion open loop (±10%)*		μm	480 480				
motion closed loop $(\pm 0,2\%)^*$		μm	- 400				
capacitance (±20%)**		μF	10.2				
feedback sensor		-	-	strain gauge	capacitive		
resolution*** open loop		nm	0.8				
closed loop		nm	-	8		2	
typ. repeatability		nm	-	80		20	
typ. non-linearity		%	-	0.1		0.02	
resonant frequency		Hz	400				
additional = 50g		Hz	300				
additional = 100g		Hz	250				
additional = 300g		Hz	150				
stiffness		N/µm	0.4				
push/pull force open loop		N	100 /100				
push/pull force closed loop		N	- 16/16				
max. load		N	50				
lateral force limit		N	100				
rotational error	x, y, z	µrad	5/5/5				
dimensions (I x w x h)		mm	52 x 52 x 32 52 x 70 x 32			32	
central aperture		mm	Ø 3				
voltage range		V	-20 +130				
connector	voltage	-	ODU series L 3pol.				
	sensor	-	-	LEMO 0S.304	LEMO	LEMO 0S.650	
cable length		m	1	1.2		1.6	
min. bend radius of cable		mm	>15			-	
temperature range		С°	-20 +80				
material		-	stainless steel / aluminum				
weight		g	250	270		370	

typical value measured with ENV 40 nanoX amplifier
typical value for small electrical field strength
The resolution is only limited by the noise of the power amplifier and metrology.

**** max. force, with which the system operates in closed loop within the specification

recommended configurations: actuator amplifier/controller	nanoX 400 30V300 nanoX	T-108-20 E-468-011
actuator amplifier/controller power supply unit PC-interface casing for all modules	nanoX 400 SG ENV 40 SG nanoX ENT 40/20 EDA 4 42 TE	T-108-21 E-248-100 E-103-13 E-202-40 E-103-97
actuator amplifier/controller casing for d-Drive	nanoX 400 CAP digital EVD 50 CL	T-108-26D E-720-300 E-751-000

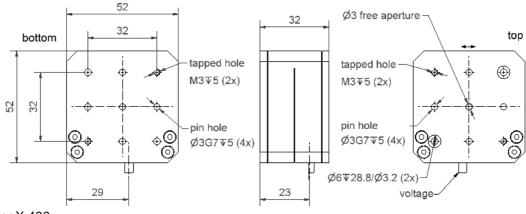


fig.: nanoX 400

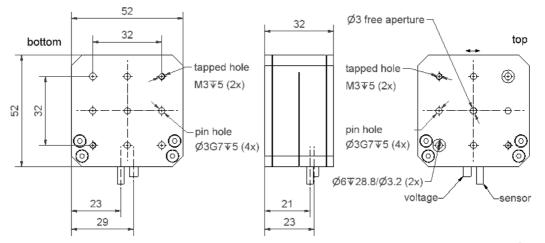
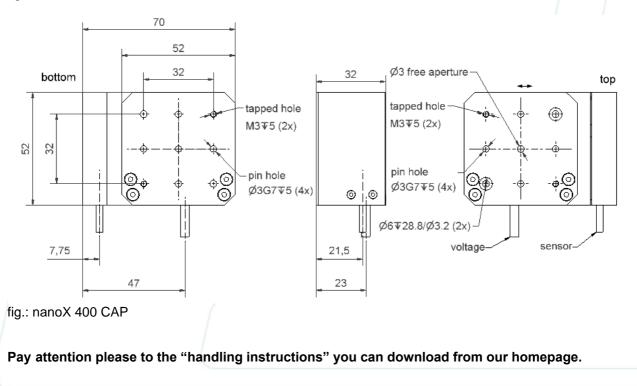



fig.: nanoX 400 SG

